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SYSTEMS DEFENSE GAMES:

COLONEL BLOTTO, COMMAND AND CONTROL*

by

Martin Shubik and Robert J.anes Waber

The first example of what is usually referred to as a Colontl

Blotto game appears to have been given by Borel:•* a defender is defend-

ing three points against an aggressor, and the lidee have equal forces.

The objective of the aggressor can be formulated either aI:

(i) Maximize the expected number of points captured,

or (ii) maximize the expeztation that a majority of points are

captured.

For three targers and equal forces these objectives are essentially

the same.

Games involving the first type of objective were generalized

by Tukey and several others**** to a claus of assignment games with mill-

tary applications known in tne litqrature as Colonel Blotto games. Quoting

*T'his work relates to Department of the N4avy Contract N00014-77-C-0513J

,asued by the Office of Naval Research under Contract Authority n 047-,006.
I7ovaver, the content does not necessarily reflect the position or the policy
of ta Departter't ok t0e Navy or the Government, and no official endorse-
ment should !e infaered.

The United States Goverv•ent has tt least a royalty-free, nonexclu-
,Lve and Irrevocablo license throughout the world for Government purposes
,: publish, translats, reproduce, duliver, perfora, dispose of, and tr
*ithorize otk~ars so to do, all or any •o.rion of this work.

"lorel (1938C.

"'**Tukey (1949), Slackett (1958), Deale and Heselden (1962), Dresher (1961),

Gross (1950).
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Deale and Hesselden:

A Ilotto gam is t xero-osum Sme involvin&
2 players, who• y be called A and B , and
K independent battlefields (which msy, in par-
ticular, represent targer arcas). A has N
units of force to distribute between the battle-
fields, and B has N unite. Each player
must distribute these forces between these battle-
fields, once for all, and without knowing his
nppc.,ent's distribution. Then if A sends x

unitt and B y. units to the kth battlefield,

there is a payoff of Pk(xk, Yk) from B to A

at this battlefield; and the payoff for the
Same as a whole is simply the sun of the pay-
offs at the individual battlefields.*

In this paper we consider a further generalizatior, which is of

importa-ace to a class of military problems. Spec.fically we wish to take

ijto account the possibility that there exists a cemplementarity amonS

rhe posts being defended, i.e. the "score" is not determined merely by

adding up individual target values but is determined by ccnsidering the

worth of capturing or "neutralizing" various confi.iurations of targets.

Our generalization includes the cl.assical Blotto g8mes as well as games

involving objectives of the s*cond type (ii),

We consider the possibility that the defending forces may be of

different site than the attacking forcos. The minimum defense force re-

quiresme-r fcr a guaraitsed defense can .e calculoted (if such a defense

Is possible). If the defending forces are less than thid minimum then

our concern is vith the level of expected success of the defenders.

By considering complementarity among targers we are in a position

to model networks and network failure. Given the redindancy in systemw

such as telephone and other communication systems (for example, early warn-

ing networks and command and control systims or electrical power grids),

DBeale and Heselden (1962), p. 65.



it is natural to consider how many components can be knocked out before

the systes can no longer perform its function. Furtherwmre we may wish

to consider cost tradeoffs between built in redundancy atu defense coqts.

If one or even a few nodes of a network are inactivated messages

may be rerouted or power red.rected. BMyond some critical level however

the system is no longer viable. Although in many instances bystens degrade

in a continuous manner, for many purposes it in sufficient to consider two

states corresponding to "on" or "off"; that is, to functioningor not functioning

at an acceptable level. For example a minimal size for a defensive second

strike force may have been selected in advance and even though some retali-

ation might be feasible with fewer weapons than the minimum level selected,

regarding the overall system as merely having two states may be an adequate

approximation for the purposes at hand. We consider the general case but

investigate the more special case as well. Surprisingly it provides mathe-

matical links among military, voting and circuit design problems.*

2. SYST ~~EAS ? FRAI.217-E AX,, 2Z1E C4AE:7T :~C~

At. n-person game in coalitional form is described by a chara•ý•,r-

i.s•;. fzr..'icn v(-) defined on all subsets of the set of all players

N • If one is considering networks or battlefields or key targets, then

the v(S) may be interpreted as the value remaining in the system if only

the set of nodes 5 1i held. (In traditional cooperative game theory It

is frequently assumed that the characteristic function is superadditive;

i.e. If S and T are disjoint, then u(S) + v(') - v(S U T) . However,

*• eale and 4eselden (1962), Young (1977), Dubey and Shapley (1977).



in a competitive context this assumption may not be reasonable. For exemple

if one is protecting a network of Doowsduy devices, the characteristic

function may assign a value of 1 to every nonempty set.)

The v(S) reflect in an extremely general way the many types of

complementarity which can exist among the various conbinations of points

in the network.

There are many different solutions which have been suggested by

game theorists for games in coalitlonea form. They all reflect various

aspects of dealings among cooperative players with different goals. Here

we note the ):'i 8u "8 and the nlec':u which can be given natural

interpretations in terms of a military problem of defending a system with

nodes. In order to g•ve this interpretation in detail we must reform-

ulate the original n-person game in coalitional form as a two-person non-

cooperative game. We do this in Section 3. Prior to doing this the cooper-

ative solutions are defined and illustrated.

The Sh.z;. .u zae* awards to each individual his expected marginal

worth on the assumption that all individuals enter all coalitions in a

completely random order. The amount assigned to an individual i may

be described es

(1) €,: - I-7 S b P l. .'[:, j ,- , S I

Consider the 3-person game with a characteristic function as follows*

Shapley (1959).
e*The notation v(ij) stcnds for the worth of the set consisting of
and j . We shall at times omit the braces from one-element sets.



v(l) o i(2) - v(3) 0

v(12) - 1 V(13) - 2 , v(23) a 3

v(123) -6

A simple calculation gives the Shapley value of this gam as - 5/6,

S2 a86/6 and * l3 a 11/6l

A different value solution originally applicble only to voting

games was suggested by lanshaf . Here an individual i my be regarded

as a "switch" with on-off probabilities of 50:50. We then use the same

type of meretnal consideration as before, obtaining

(2a) V & ,, •1 ) - v

The ei will not necessarily sum to v(N) in this formulation, hence

if we with we can define a "norlalised Banzhaf value" as

B.

(2b) - .

.1 0 i

Applying these formulae to the example above we obtain for the

unnorm•lized values 0 a (1, 3/2, 2) , or 0' - (8/9, 12/9, 16/9) •

Instead of regarding the probabilities that an individual will

be "on" or "off" as 50:50 we could consider then more generally as given

by t and l-t where 0 < t < 1 . A general class of values has been

considered with:

da ( 9 te(,-t)n65)I.(•(%) - (S).SC\i

B lanzhaf (1965) •
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The Shapley valuo is simply the unveighted average of all of these "t-

values."

Dub'iy and Weber have shown that thare is a whole tlas of (not

necessarily symmetric) value solutions* which inclades both the Shapley

and Banzhaf values as special cases; the solutions differ from each other

in the weights or probabilities placed upon the formation of the different

coalitions. Why one should choose one set of veights over arother appears

to be a problem better answered by the needs 4nd reality of a specific

model than one amenable to purely a priori considerations.

The v'v44*e:ue is essentially the center of gravity of the core

of a &ame, if a core already exists, or it is the point at which the

core first appears if a corelest game is appropriately modified.

In order to aske this statement more precise the Sz~eee of a coalition

S , when 'iewi-g a prospective payoff ve,.tor C - (at ... , is

def n.d as

(e CSj - ,,) - ai .

The excess is a measure of how much more (or less) a coalition S can

claim for itself in comparison with what S obtains at the specific im-

putation a .

The nucleolus is the imputation at whtich the maximum exces& of

any coalition IF minimized. (Nonuniqueness is resolved by successive

mainimiation of the nonmaximal excesses.)

For the Same above, the imputation a - (al, a2 " V13) that minimizes

the maximm excess is the point (2/4. 5/•., 9/4) . for which

Dubey and Weber (1977). In Dubey. Neymen and Weber (1978), it is shown
that the a4ditional requirement of symatry yields precisely the family
of all vwighted averages of t-values.
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0( ) d

e1 3(3) 4-

In tthe remuinder of this paper we viii not d•a1 vich t,• nu'1eolus.

However in slightly different models than the oaes ueed be-e it plays an

important role.*

The solution concepts above appear to offer different ways for

assl £niag values or- worth. to the components of tht game, b-it ve have

given no indication of how to link these voluation schbmes vWth competi-

tion or conflict. We do this in Section 2.2.

2.:•. 7)w Ncwoopmrai, ;zne

We recast the gaue given in characteristic function for as th.ugh

it were a two-person :er.-sim Sam played between two opponents, a de-

fender and an attacker. The n players in the original game are regardod

as nodes or individual targets in a netwomk that the defender is trying

to protect and the attacker is trying to destroy.

There are several different models of combat at a mingle target

that we can choose. The validitt of different models of combat undoubtedly

depends directly upon the type of target &nd the nature of attacking and

defending forces. Specific mathematical forms to describe the battle

outcose at a single target are discassed in Section 3.

Shubik and Young (1978).



Let ,,' ., Z,3 :id ' 1 ..... 4n We the assisEonts of forces

of the 4efendW• &ad attacker to the " targets a&d let f;(:. k be

the function (as yet unspecified) which Indicates the outcomw of the battle

at polatt ,' A natural interpretation which we take at this time to

that it ,pecifLes the probtbility that the defender retains point -

Assumm that the coal of the defender is to Saximize the (expected)

effectveness of the surviving confiSuration of targets. The probability

that the targets in the sot survive, while all others are destrcynd.

is " zi " 4, '.r:p e:j.- Therefore, zhe expected effective-

ness of the surviving collection is

Aet A and be the respective amsunts of strategl resouTrcos

(for exemple. troops or ballistic/anti-ballistic missiles) held by the

defsoder a&W, the attacker. If we assue that the interests of the attaaker

are directly opposed to tlis* of the defender, then• we have at hand a

two-person zoro-suLi &ame. The defender ,,ay cho.:.se &.v allocation

X V -Z of resources, sub•'sct te the constraint that -

Similarly. the attatker say choose any allo.:ation for

which o. - The payoff (to the defender) is

.f we suspend the lrd'erpretation of the functions -" as Indicating

probabilities, we find that this ccmpetttive game directly generalizes

the traditional Colonel Slotto games. as described in the fi-nt section

of this paper. Assume that the underlying chAracteristic function in

additive, so that v'S) - v•,kv) for all S C , Then
kcS"
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CIZ.11 fk (' if.) v(k)
ki

by Identifying ?ýklak, bk) With fk(Xk" -k )-v(k) (for example, by tak-

ing F& " 0k amd u(k) , 1 for all k c N ). we may obtain any classi-

cal blotto grin. we desire.

Prior to investigating the two-person zero-*,,, game, it is deair-

able to describe some pdtes for individual battle outcome*. These are

critical for calculating the probability of the capture or destruction

of an individual target. It is this tactical infcrmation which Is needed

as a basis for overall strategic coinnd decision* concerning allocation

of forces.

ZI my wall be reasonable to state that the probability that a

target i is captured or destroyed is a function fj._'., y.) of the

resources expended in attack and defense by the two sldes. The actual

appearance of thie function Is an empirical question whtich depends upon

target type, force %is. doctrine used. orals and many other factors

which cantwt be stated vr =C.&

A listing of the various battle models which have been considered

together vwith critical evaluation of their validity is beyond the scope

of this paper. Such a study wouid be of considerable worth but does not

appear to be available. Even INapoleon's dictum that Cod is on the side

of the atrowsest battalion does not appear - be boriu out when the sot-

tistics of the eise of forces of victors and losers of major battles are

comparesd.

eSee Dupuy (1977), p. $I.
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For the purposes of this paper we consider a simplified clan- of

models where the attacker and defender have homogeneoas resources; hence,

force mix problems are set aside.

In particular ye consider

(5) f(x,y) - unless x - 0 y - 0

X -Y if X 0 , - 0.

y may be interpreted as an indicator of the natural defensibility

of the target. If Xz Y , then f(x,y) Ny

'r reflects the importance of the difference in size between the

attacking and defendirg forces.

The homogeneity of the function f allows us to concern ourselves

with the ratio k A.B of defending to attacking forces, rather than

with the specific amounts A and B

Surprisingly, at one extreme in the class of mechanisms suggested

by (5) we have a mathematical analogy between an economic market and a

kill c. capture piobability. At the other extreme the Colonel Blotto

capture conditions appear, and we observe a mathematical analogy between

combat and a peculiar auction known as "the dollar auction." * This

auction serves to illustrate problems in escalation. It is discussed

further below.

wShubik (1971).
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3.2. Pmportiona Did and Ki-l lb:iti..

If we "t f * I sad n - ibewi (5) becomes:

(C) - -

This condition can be stated as "you get In proportion to vhat you pay."

Suppose for eaample that theoe isa single target. Then In a

military context (6) gives the prsaability that the defender wins. Al-

ternatively we my consider an economic contamt as follows: Imagine that

instead of a single target there Is a single good to bc sold. Further-

more consider that the good is divisible (for instance a thousand gallons

of gasoline). Interpret the z and y as sums of money bid for the

good. Then :' my be regarded as an overall price, and the price

divided into the amount of money bid by an individual indicates the pro-

portion of the good that individual receives.*

Set y - 1/2 and let r. - Then (5) becomes

11 if
f(z,•)-

(7) 1 i2 If

0 If z:

Shubik (1973), Shapley and Shubilk (1977).

Li~
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The function in (7) presents the crudest form of "superior forces"

model. It states -hat superior forces will win with certainty.

If one imag.ines that the force- on each side arc essentially inte-

gral (for example the defender has m battalions and the attacker has

n battalions and an assigrment of forces must always be made in integral

units) then the force-allocation game can be solved as a matrix game.

If one allows for a continuous distribution of forces, all except a few

highly special cases are difficult to analyze fully.*

A natural question to ask is whether the finite models show nice

limiting behavior as the grid is made finer. That is, suppose we allow

the splitting of battalions into brigades, or even into individual troops:

as we consider closer and closer approximates to continuous distributions

of forces do the solutions behave in a regular wjay?

The original Blotto games use the battle condition reflected in

(7) together with the further simplification that the values of the tar-

gets are independent. This is equivalent to stating that ;z(') is addi-

tive; that is,

v(S) = • v(i) for all S C N .

i cs

Here by having a general characteristic function v(.) and using

the battle conditions of (7) we describe a much more general class of

Blotto games. Unfortunately,if resources of the defender and attacker

are the same or even close, in general there are no pure strategy solutions

(coss (1950), Beale and Heselden (1962).



13I to these games. The existence of pure strategies, as Is shuwn elsewhere,*

will depend upon a relationship berwoen the relative size of forces

k and the exponeni. M in (5). In particular, as has already been noted

by Peyton Young (in a different and more specialized context),if k Is

large enough then the Colonel Blotto game will have a pure strategy solu-

tion.

It is clear that whenever the relative size of the defending force

to the attacking force is such that the defender can guarantee the allo-

cation of superior forces to the defense of all n targets there will

be a pure strategy solution. This is correct but trivial and suggests

that a better model is called for. In partic:ular a natural extension of

the model which is discussed in Section 5 relates the cost of the defend-

ing forces to the value cf the targets defended. In the formulation above

the forces are given and their cost is not calculated in the payoffs. .
We noted at the start of Section 3 that the Blotto game formula-

tion could be related to a peculiar form of market. The analogy is not

as far-fetched as it may seem at first glance. In a normal price market,

individuals commit resources In the form of money and they receive goods

in proportion to the amounts bid. In an auction market individuals com-

mit resources in the form of promises to pay; the individual who wins

must provide the money bid and obtains the prize, while those who lose

make no payments. In a military engagement both sides commit their re-

sources and, although only one side gets the prize of victory, both must

pay.

The dollar auction is an elementary game in which someone auctions

*Shubik and Weber (1978).
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off a dollar. Bids are sequentially accepted (in units, for example,

of five cents). When no bid Is entered in a fixed interval of time the

Same ends, and the dollar is given to. the highest bidder In exchange for

his bid. There is, however, the additional rule that the second highest

bidder must also pay the auctioneer the amount of his bid, and obtains

nothing. When this game Is played with open sequential bids it provides

a classical example of escalation. Suppose, for example, that A has

bid $1 and B has bid 95c. B way decide to bid $1.05 In order to cut

his losses to 5c. Using the same reasoning A may then raise his bid

to $1.10, and so forth.*

If we consider a similar game, played with both individuals making

single simultaneous bids, then the relation to the Colonel .1lotto game

emerges. SuppouJe each of the two players has $2. We use as the payoff

functions

"l-x if X > Y

(8) Fl-'X') x if X , Y

-X if X < y

1-Y if y > X

and P2(XY) 1 •2 Yif Y - X

fY if y <x.

*Shubik (1971).

I
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This formulation implicitly assumes that there is a direct and simple

relationship between resources committed and their costs. This is clearly

true in the dollar auction. In a battle however, one might at-

tribute sowe valuo to victory, but there is a difficult probleu in cast-

in$ the value of victory, the resources committed and the costs of the

resources in comensurate units. We return to this problea in Section 4.

A relationship between auctions and Blotto games has been remarked

upon before by SakaSushl.*

3.3. A Corre•.t on CcnfXc? r. M,,deZa

Zero-sum games can be qualitatively classified, according to whether

they have pure-statesiy optimal solutions, or require the use of randomi-

zation for optimal play, PFre-strategy solutions to a competitive de-

fender/attacker g&me are closely related to the t-values of the under-

lying characteristic funL.ion game.

Specifically, assume that t&e same outcome function f(-,') de-

scribes thesituationatall n targets (battlefields), and further assume

that f Is homogeneous ef degree zero (so that fi'x,y) - f¢C•,,a•.) for

all c > 0 ). Let the initial rvsources of the opposing sides be A

and B , respectliely. Then, If both sides havie optimal pure strategies,

these strategies must be resource allocations proportional. to the f(A,B)-

value of the underlying Same.

Furtherum. :e, let f have, the form f(x,y) w "YxI/(-yx + (1--y)y")

Then, for all sufficiently small values of m , the allocaticns propor-

tional to the f(AB)-value are indeed optimal. (Note that mll values

*Sakagushi (1962).
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of m correspond to outcome fuctions which are relatively insensitive

to small differences in opposing allocations at a target. It is not un-

reasonably to expect such a situation to occur.)

Further deetals concerning thes& results are presented elsewhere .

4. THE COSTS OF SYSTEM.S DEFENSE

"What price freedom?" Is a saying that is difficult to operationalise

for political philosophers, for Department of Defense budget proposers,

or for economists.

A model that links the value and the cost of defense is presented

here and a different model is also noted in Section 5.

Here we consider the value of defense in relationship to its costs.

In Section 5 we take the costs of defense as given but consider the pos-

sibility of trade-of fs between systems design and the defensibility of

a system. (From the point of view of modelling the process of defense

the model here is far less satisfactory than that in Section 5.)

At a high level of abstraction we can consider four major factors

in the description of the defense of a system:

(1) The military or societal "worth" of defense;

(2) The type of forces, quantity of forces, and force-structure

used in defense;

(3) The cost of the forces;

(4) The "hardness" or "defensive strength" of individual

targets.

*Shubik and Weber (1978).
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The models in Sectior 3 essentially avoid the problems of compar-

In& value and cost by portraying value In the characteristic function

and specifying the avais;le attack and defense forces. Thus the military

resources enter only #* boundary conditons on a "orce assignment problem,

rather than as resources whose costs aust be taken Into account in the

paloffs. By using this foruulation there is no need to compare v&lue

and cost.

In economic markets involving bidding or prices the mechanism is

explicitly designed to include value and cost in the payoffs. If there

is some item selling at price p and au individual buys : units of it,

paying in some other commodity of vhich he has a supply M , then his

payoff is given by:

S(:, M - px)

If we were to regard M as a money which the individual values

more or less at a constant worth we might write his payoff as:

*(X) + M - pX.

We can easily modify the games of Section 3 to include costs in

the following manner. The defender and attacker first each select force

levels k and k 2 , incurring costs of c1 (k1 ) and c 2 (k 2 ) . They

then each assign forces and the payoffs are given by:

(9) P1 " V(S) - 1 (k1 )

for all S

P2 v(SC) - 2(k2)

where the v($) Is the worth (in monetary units) of the set S of targets
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defended suctessfully. (In analogy with our earlier zero-sum model, we

could alter-atively define P " -V(S) - 2 ( 2 ) If V is constant-

mm. these two approaches are equivalent.) This is a two-stage noncon-

atant-ms Same.

The fact that the above game formulates vell as a two stage pro-

case should call attention to the possibility that in actuality the two

stages are separate. In both tim and bureaucratic control. The problem in

a defense department in dealing with the government as a whole is to select

ki , incurring the budgetary expense ic(k.) . The problem of the com-

mender, having been presented with forces ki , is to allocate these

forces wisely.

From the viewpoint of analysis it thus seems to be reasonable to

regard the models of Section 3 as worth pursuing at the level of command

and control but to consider the type of model suggested by (9) as a dif-

ferent level of decisiormaking which involves deep problems in the modelling

of defense budgeting.*

6. THE WA.DENrNG OF TARGES

In order to Illustrate the preceding considerations, we analyze

a simple example. Assume that the defender seeks to protect three sites,

at each of which several anti-ballistic missiles are siloed. If the at-

tacker destroys any two (or all three) of the targets, the overall defen-

sive system will collapse. The first site houses fewer missiles than

the second, which in turn houses fewer than the third; although any two

surviving sites will yield an adequate system, the survival of all three

provides even greater security. We model this situation with a charac-

*Hitch and McKean (1960).
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teristic function V , which satisfies v(123) - A ; V(12) 1 ,

"V(13) -2 , V(23) .3; v(S) -0 if Is_ 4.1

Assume that the attacker and defender possess comparable &mouts

of strategic resources; say, A - 3 - 1 . Let the outcome of coaflict

at site k be represented by the function Pk(x:y) a Hkc /(Y kx +*(I-OV .

for some relatively small value of m (that in, assume that equal fotces

engaged at site k iluJ1 yield a result favorable to the defender with

probability Yk , and further assume that small differeu.esa in troop as-

signments lead to only small changes in this probability). The parameter

'Yk ind5-,tes the "hardness" of the target at site k -its natural strength

aghinst attack. The optimal allocation of strategic forces by each side

will be prolortional to the (yl, Y2, Y3 )-value of the Same v . Hence,

this allocation will be proportional to the vector

8 a (Y2 + 2Y3  - 2Y2 Y3 , y1  + 3y3  - 2Y1v3, 2Y1 + 3Y2 - 2Y1  2)

In particular, if we initially have Y I a2 Y 3 a 1/2 , the optimal

allocation for each side is (2/9, 3/9, 4/9)

Now, assume that additional capital is available to the defender,

which may be used to harden any of the targets. Indeed, assume that an

investment of Ack units of capital at site k will yield an increase

of (l-Yk).Ack in the hardness of target k< ; that Is, 3yk/I "k)W

A natural question is how best to invest the additional capital.

Assume that the defender allocates his forces according to

x - (x1, =2 Z3 ) , while the attacker's deployment is Y" (bl' 2. y3)

Then the value of the outcome of the cozpetitive game, to the defender, is
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D Usy]) PIP2 2PiP3 . 3P 9 3 -2P 3

where each Fk is evaluated at (Xkl Mk) . The optimal strategies are

X& , It * W/16- . Therefore, the rate of pain from Investment in the

hardening of target k is

k k 4k

(0VY (1--k 0 1

The best investment Is in the target (or targets) for which this expres-

sion is maximized. But the expression varies with the parameters Y1

Y2 " and Y3 . Hence, if we begin with all Yk equal, it is best to

initially invest in work at the site for which 8k is maximal; this changes

8 as well as Yk " after which we can determine the I -t target for

further investment. Beginning with 11 - Y2 ' *3 = 1/2 , we obtain the

results indicated in the figures. (As the available capital increases

without limit, the value of D(Wl, y) approaches 4, and the three sites

attract nearly equal proportions of the capital.)

(vailue of game
to) defender)

o .087.162.26 .63 .84 1.32 2.37 4.492.2I
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Proportion
of capital

Invested
in each site

1-
I I

I 35%~ -- 21_2•--4/3

.087 .182 .26 .63 .84 1.32 2.37 4 apt•I

This model is presented merely as a simple suggestive example of

thr type of computationwhich, although rot easy, appears to be feasible

and relevant to studying tradeoffs in defense, in hardening of targets,

and in redundancy in systems.

:1
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